25 research outputs found

    Improved Algorithms for Integer Complexity

    Full text link
    The integer complexity f(n)f(n) of a positive integer nn is defined as the minimum number of 1's needed to represent nn, using additions, multiplications and parentheses. We present two simple and faster algorithms for computing the integer complexity: 1) A near-optimal O(NpolylogN)O(N\mathop{\mathrm{polylog}} N)-time algorithm for computing the integer complexity of all nNn\leq N, improving the previous O(N1.223)O(N^{1.223}) one [Cordwell et al., 2017]. 2) The first sublinear-time algorithm for computing the integer complexity of a single nn, with running time O(n0.6154)O(n^{0.6154}). The previous algorithms for computing a single f(n)f(n) require computing all f(1),,f(n)f(1),\dots,f(n)

    Simple and Faster Algorithms for Knapsack

    Full text link
    In this paper, we obtain a number of new simple pseudo-polynomial time algorithms on the well-known knapsack problem, focusing on the running time dependency on the number of items nn, the maximum item weight wmaxw_\mathrm{max}, and the maximum item profit pmaxp_\mathrm{max}. Our results include: - An O~(n3/2min{wmax,pmax})\widetilde{O}(n^{3/2}\cdot \min\{w_\mathrm{max},p_\mathrm{max}\})-time randomized algorithm for 0-1 knapsack, improving the previous O~(min{nwmaxpmax2/3,npmaxwmax2/3})\widetilde{O}(\min\{n w_\mathrm{max} p_\mathrm{max}^{2/3},n p_\mathrm{max} w_\mathrm{max}^{2/3}\}) [Bringmann and Cassis, ESA'23] for the small nn case. - An O~(n+min{wmax,pmax}5/2)\widetilde{O}(n+\min\{w_\mathrm{max},p_\mathrm{max}\}^{5/2})-time randomized algorithm for bounded knapsack, improving the previous O(n+min{wmax3,pmax3})O(n+\min\{w_\mathrm{max}^3,p_\mathrm{max}^3\}) [Polak, Rohwedder and Wegrzyck, ICALP'21]

    More Dynamic Data Structures for Geometric Set Cover with Sublinear Update Time

    Get PDF
    We study geometric set cover problems in dynamic settings, allowing insertions and deletions of points and objects. We present the first dynamic data structure that can maintain an O(1)-approximation in sublinear update time for set cover for axis-aligned squares in 2D . More precisely, we obtain randomized update time O(n^{2/3+?}) for an arbitrarily small constant ? > 0. Previously, a dynamic geometric set cover data structure with sublinear update time was known only for unit squares by Agarwal, Chang, Suri, Xiao, and Xue [SoCG 2020]. If only an approximate size of the solution is needed, then we can also obtain sublinear amortized update time for disks in 2D and halfspaces in 3D . As a byproduct, our techniques for dynamic set cover also yield an optimal randomized O(nlog n)-time algorithm for static set cover for 2D disks and 3D halfspaces, improving our earlier O(nlog n(log log n)^{O(1)}) result [SoCG 2020]

    More on Change-Making and Related Problems

    Get PDF

    The Complexity of Distributed Edge Coloring with Small Palettes

    Full text link
    The complexity of distributed edge coloring depends heavily on the palette size as a function of the maximum degree Δ\Delta. In this paper we explore the complexity of edge coloring in the LOCAL model in different palette size regimes. 1. We simplify the \emph{round elimination} technique of Brandt et al. and prove that (2Δ2)(2\Delta-2)-edge coloring requires Ω(logΔlogn)\Omega(\log_\Delta \log n) time w.h.p. and Ω(logΔn)\Omega(\log_\Delta n) time deterministically, even on trees. The simplified technique is based on two ideas: the notion of an irregular running time and some general observations that transform weak lower bounds into stronger ones. 2. We give a randomized edge coloring algorithm that can use palette sizes as small as Δ+O~(Δ)\Delta + \tilde{O}(\sqrt{\Delta}), which is a natural barrier for randomized approaches. The running time of the algorithm is at most O(logΔTLLL)O(\log\Delta \cdot T_{LLL}), where TLLLT_{LLL} is the complexity of a permissive version of the constructive Lovasz local lemma. 3. We develop a new distributed Lovasz local lemma algorithm for tree-structured dependency graphs, which leads to a (1+ϵ)Δ(1+\epsilon)\Delta-edge coloring algorithm for trees running in O(loglogn)O(\log\log n) time. This algorithm arises from two new results: a deterministic O(logn)O(\log n)-time LLL algorithm for tree-structured instances, and a randomized O(loglogn)O(\log\log n)-time graph shattering method for breaking the dependency graph into independent O(logn)O(\log n)-size LLL instances. 4. A natural approach to computing (Δ+1)(\Delta+1)-edge colorings (Vizing's theorem) is to extend partial colorings by iteratively re-coloring parts of the graph. We prove that this approach may be viable, but in the worst case requires recoloring subgraphs of diameter Ω(Δlogn)\Omega(\Delta\log n). This stands in contrast to distributed algorithms for Brooks' theorem, which exploit the existence of O(logΔn)O(\log_\Delta n)-length augmenting paths

    Further Results on Colored Range Searching

    Get PDF
    We present a number of new results about range searching for colored (or "categorical") data: 1. For a set of nn colored points in three dimensions, we describe randomized data structures with O(npolylogn)O(n\mathop{\rm polylog}n) space that can report the distinct colors in any query orthogonal range (axis-aligned box) in O(kpolyloglogn)O(k\mathop{\rm polyloglog} n) expected time, where kk is the number of distinct colors in the range, assuming that coordinates are in {1,,n}\{1,\ldots,n\}. Previous data structures require O(lognloglogn+k)O(\frac{\log n}{\log\log n} + k) query time. Our result also implies improvements in higher constant dimensions. 2. Our data structures can be adapted to halfspace ranges in three dimensions (or circular ranges in two dimensions), achieving O(klogn)O(k\log n) expected query time. Previous data structures require O(klog2n)O(k\log^2n) query time. 3. For a set of nn colored points in two dimensions, we describe a data structure with O(npolylogn)O(n\mathop{\rm polylog}n) space that can answer colored "type-2" range counting queries: report the number of occurrences of every distinct color in a query orthogonal range. The query time is O(lognloglogn+kloglogn)O(\frac{\log n}{\log\log n} + k\log\log n), where kk is the number of distinct colors in the range. Naively performing kk uncolored range counting queries would require O(klognloglogn)O(k\frac{\log n}{\log\log n}) time. Our data structures are designed using a variety of techniques, including colored variants of randomized incremental construction (which may be of independent interest), colored variants of shallow cuttings, and bit-packing tricks.Comment: full version of a SoCG'20 pape

    On the Fine-Grained Complexity of Small-Size Geometric Set Cover and Discrete k-Center for Small k

    Get PDF
    We study the time complexity of the discrete k-center problem and related (exact) geometric set cover problems when k or the size of the cover is small. We obtain a plethora of new results: - We give the first subquadratic algorithm for rectilinear discrete 3-center in 2D, running in O?(n^{3/2}) time. - We prove a lower bound of ?(n^{4/3-?}) for rectilinear discrete 3-center in 4D, for any constant ? > 0, under a standard hypothesis about triangle detection in sparse graphs. - Given n points and n weighted axis-aligned unit squares in 2D, we give the first subquadratic algorithm for finding a minimum-weight cover of the points by 3 unit squares, running in O?(n^{8/5}) time. We also prove a lower bound of ?(n^{3/2-?}) for the same problem in 2D, under the well-known APSP Hypothesis. For arbitrary axis-aligned rectangles in 2D, our upper bound is O?(n^{7/4}). - We prove a lower bound of ?(n^{2-?}) for Euclidean discrete 2-center in 13D, under the Hyperclique Hypothesis. This lower bound nearly matches the straightforward upper bound of O?(n^?), if the matrix multiplication exponent ? is equal to 2. - We similarly prove an ?(n^{k-?}) lower bound for Euclidean discrete k-center in O(k) dimensions for any constant k ? 3, under the Hyperclique Hypothesis. This lower bound again nearly matches known upper bounds if ? = 2. - We also prove an ?(n^{2-?}) lower bound for the problem of finding 2 boxes to cover the largest number of points, given n points and n boxes in 12D . This matches the straightforward near-quadratic upper bound

    The Energy Complexity of Broadcast

    Full text link
    Energy is often the most constrained resource in networks of battery-powered devices, and as devices become smaller, they spend a larger fraction of their energy on communication (transceiver usage) not computation. As an imperfect proxy for true energy usage, we define energy complexity to be the number of time slots a device transmits/listens; idle time and computation are free. In this paper we investigate the energy complexity of fundamental communication primitives such as broadcast in multi-hop radio networks. We consider models with collision detection (CD) and without (No-CD), as well as both randomized and deterministic algorithms. Some take-away messages from this work include: 1. The energy complexity of broadcast in a multi-hop network is intimately connected to the time complexity of leader election in a single-hop (clique) network. Many existing lower bounds on time complexity immediately transfer to energy complexity. For example, in the CD and No-CD models, we need Ω(logn)\Omega(\log n) and Ω(log2n)\Omega(\log^2 n) energy, respectively. 2. The energy lower bounds above can almost be achieved, given sufficient (Ω(n)\Omega(n)) time. In the CD and No-CD models we can solve broadcast using O(lognloglognlogloglogn)O(\frac{\log n\log\log n}{\log\log\log n}) energy and O(log3n)O(\log^3 n) energy, respectively. 3. The complexity measures of Energy and Time are in conflict, and it is an open problem whether both can be minimized simultaneously. We give a tradeoff showing it is possible to be nearly optimal in both measures simultaneously. For any constant ϵ>0\epsilon>0, broadcast can be solved in O(D1+ϵlogO(1/ϵ)n)O(D^{1+\epsilon}\log^{O(1/\epsilon)} n) time with O(logO(1/ϵ)n)O(\log^{O(1/\epsilon)} n) energy, where DD is the diameter of the network

    Faster Approximation Algorithms for Geometric Set Cover

    Get PDF
    We improve the running times of O(1)O(1)-approximation algorithms for the set cover problem in geometric settings, specifically, covering points by disks in the plane, or covering points by halfspaces in three dimensions. In the unweighted case, Agarwal and Pan [SoCG 2014] gave a randomized O(nlog4n)O(n\log^4 n)-time, O(1)O(1)-approximation algorithm, by using variants of the multiplicative weight update (MWU) method combined with geometric data structures. We simplify the data structure requirement in one of their methods and obtain a deterministic O(nlog3nloglogn)O(n\log^3 n\log\log n)-time algorithm. With further new ideas, we obtain a still faster randomized O(nlogn(loglogn)O(1))O(n\log n(\log\log n)^{O(1)})-time algorithm. For the weighted problem, we also give a randomized O(nlog4nloglogn)O(n\log^4n\log\log n)-time, O(1)O(1)-approximation algorithm, by simple modifications to the MWU method and the quasi-uniform sampling technique
    corecore